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Abstract—An indirect boundary element formulation is constructed by using a fundamental solution
of the biharmonic operator. It is shown that the fundamental solution and its derivatives can be
represented by four functions with two integers. The new representation is not only a simpler
representation but also reveals a structure that is exploited in the development of an algorithm
based on the analytical integration of line and area integrals. The analytical integral values are used
to establish continuity requirements on the unknown fictitious deusities. Numerical examples
consider the consequences of satisfying and violating the continuity requirements by the unknown
fictitious densities. It is also shown that if the fictitious density distributions do not satisfy certain
conditions then the solution can be affected by the choice of the non-dimensionalizing variables.
Numerical examples with a varicty of boundary conditions demonstrate the effectiveness and
limitations of the proposed algorithm.

[. INTRODUCTION

The various boundary clement formulations for plate bending can be broadly categorized
as the direct and the indirect formulations. The direct methods are based on the reciprocal
theorem. Bezine (1978) and Stern (1979) generated integral equations that related plate
displacements, slopes, bending moments and shear forces on the boundary. The indirect
formulations are constructed by superposing singular solutions. The unknowns of the
problem are fictitious densitics but these fictitious densities can be related to jumps in
physical variables at the boundary. There are several approaches for constructing the
integral equations in indirect methods. Jawson er al. (1967) represented the biharmonic
equittion by two harmonic equations and used the fundamental solution for the harmonic
equations to formulate the problem. Altiero and Sikarskie (1978) used Green’s function
for a circular clamped plate for constructing the integral equations. Both of these indirect
formulations produce good numerical results only for certain kinds of boundary conditions.
A more general indirect formulation can be constructed by using the fundamental solution
of the biharmonic operator, as was done by Tottenham (1979). However, few details about
the numerical implementation were discussed. Scveral investigators (Paris and Leon, 1987,
Hartmann, 1986 ; Abdel-Akher and Hartley, 1989 ; Vitooraporn and Moshaiov, 1989 ; Wu
and Alticro, 1981) have used the above formulations as the starting point. No study has
been conducted that establishes the superiority of one formulation over another.

The fundamental solution of the biharmonic operator is used for constructing the
indirect formulation in this work as it is simpler than the direct boundary ¢lement method
and yet applicable to all types of boundary conditions. The simplicity of the formulation is
due to the following two reasons.

(i) A total of eight fundamental solutions are needed in the entire formulation. The
direct method uses eight fundamental solutions to relate the boundary data and requires
eight more to represent the bending moments (in-plane stresses) and the shear forces
(transversc shear stress).

(i1) The highest order of singularity is of order 2 in this work. In the direct formulation
the fundamental solutions relating the boundary data also contain a singularity of order 2.
However, subsequent differentiation for representing moments and shear forces generates
higher order singularities. Evaluation of quantities containing these higher order terms near
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and on the boundary requires special consideration (see Kava and Erdogan. 1987 Kut
1975: Rudolphi, 1991). It should be emphasized once more that no claim is being made
that the indirect method is numerically superior to the direct method. All that is being
claimed ts that the indirect method 1s simpler.

The fundamental solutions relating plate displacement to a unit transverse force and
a unit bending moment are relatively simple. But to compute slopes. moments and shear
forces the fundamental solutions have to be reperitively differentiated. This repetitive
differentiation results in long. messy expressions. The problem is further exacerbated if one
seeks to evaluate the integrals of these fundamental solutions analytically. In this work an
alternative representation is described 1n Section 3. This representation uses tour functions
with two integer parameters to describe all the fundamental sotutions. This representation,
besides being simple. also reveals the structure of the fundamental solutions that can be
exploited for the development of the numerical algorithm.

The integral representation of the relevant plate quantitics, contains fictitious shear
force distribution and fictitious bending moment distribution as the unknowns of the
problem. In Section 3 the continuity requirements the fictitious shear torce and fictitious
bending moment must satisty are derived and discussed. Situations in which the continuity
conditions should be relaxed are also discussed in Seetion S, The continuity requirements
dictate that the fictitious shear force should be approximated by a Lagrange polynomial
and the fictiious bending moment should be approximated by a Hermite potynomial.

In Seetion 7 the dimensiondess variables are defined. Ttis shown thatifcertain conditions
{analogous to equilibriumy) are not satisficd by the fictitious shear foree distribution and
fictittous bending moment then the results tor displucement, slopes and moments can be
affected by the choice of non-dimensionalizing variables.

To evaluate the boundary mtegrads the unknowns were approximated by polynomials
over segments of the boundury. Each segment was subdivided into @ number of straight
line segments. The clement over which the unknown s approximated is subdivided to get
a better representation of the curvature of the boundary without increasing the number of
unknowns. The integrals are evaluated analytically using the general algorithm presented
in Vable (1Y8S).

To eviluate the domain integrals the transverse loads were assumed to be constant
over small elements of the domain, The shape of these domains can be arbitrary. The
domain integrals were converted to line integrals over the boundary of each domain element
as deseribed by Zhang (1989). The boundaries of the domain clements are approximated
by a set of straight line segments and onee more the integrals are evaluated analytically
using the algorithm of Vable (1985).

A circular and a square plate subjected to a uniform transverse load with a variety of
boundary conditions are used as numerical examples. Results are compared for Lagrange
and Hermite polynomial approximations in cach example. These results demonstrate the
effect of continuity requirements on the accuracy and the matrix conditioning. The results
are presented in Section 8.

2. BOUNDARY VALUE PROBLEM

The boundary value problem in terms of & differential equation is presented briefly in
order to introduce notation and the sign convection.

Let w(Q) be the small deflection at a point @ on a thin clastic, homogencous, 1sotropic
plate R. The deflection w(Q) is related to the transverse load p(Q) by the biharmonic
operator detined below:;

Dw  AQY=p((Q)} QR {j=x% €}
where D is the flexural rigidity of the plate. A repeated index implics summation and a

commua implics differentiation. The in-plane stresses 4, are related to the bending moments
M,, which can be related to the deflection w as tollows:
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Y
Fig. |. Positive direction for moments and shear forces.
h
~h
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where 24 is the thickness of the plate, v is Poisson's ratio and d,, is the Kronecker delta.
The shear force @, is related to the transverse shear stresses and the deflection w as follows

h
Q= j g.dz= —Dw,,. (3)
0

It should be noted (see Fig. 1) thateven though M, = M, in magnitude, the directions
of the moments are different and this difference at a corner results in a corner force
(discussed later). At each point on the boundary B except corners, two pieces of information
must be specified, as given below :

w(Q) = w or V. Q)="V (4a)
and QonB
w,(Q)=w,n,=0 or M(Q)=M (4b)

where the quantities with a bar represent the specified boundary values. s, represents the
direction cosines of the unit normal at point Q on the boundary B. V, is the equivalent
shear force and M, is the normal bending moment, which can be related to previously
defined quantities as follows:

M, =Mnn = —D(w,,+vw,) (5)

d
V,= ant+ E(Ml/nit/)

(t-v
R

- D (w.mm + (2 - V) "'.lln) - D (W.H - w.ml) (6)

where
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Woe = W, NN, (7a)
W= W, 1L (7b)
W = W, 00,0, (7¢)
Wom = W LT (7d)

and ¢, and R represent the direction cosines of the unit tangent and the radius of curvature
at point Q respectively on the boundary B.
At each corner the following must be specified:

w(Q) =, or GQ)=2M, = =2D(Il—vw,mt, =G (8)

where C; represents the corner force.
The integral representation of eqn (1) is developed by using a fundamental solution,
as discussed in the next section.

3. FUNDAMENTAL SOLUTION

Let G(Q. P) represent the displacement at point Q due to a unit transverse force at
point P in an infinite plate. Using Fourier transform it can be shown that:

G(Q.P) = g : riln(r) 9)

nD

where

3

r

rl rl

"‘:(Q) -xi([,)-

rl

Another fundamental solution associated with a4 unit moment can be generated by
considering two transverse forees of equal magnitude but in opposite directions placed
along a line, as shown in Fig. 2. The direction of the two forees is chosen to produce a
positive deflection to the left of the point P. By superposition the deflection at point @ will
be given by :

Fig. 2. Positive direction for M-
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0G(Q.P)

[G(Q.P—e)—G(Q.P+e)]V = — P

(2eV) + terms of order &°.

As £ — 0 let V' — oc such that 2¢V” — M. The direction of M. will be perpendicular to the
line, as shown in Fig. 2. Thus —[0G(Q. P)]/[éC(P)] represents the deflection at point Q due
to unit moment applied at point P. The superposition principle can once more be invoked
to generate integral expressions for the displacement. By distributing a fictitious transverse
force V'* and a fictitious moment M, two line integrals will be generated. The distributed
load can be incorporated by distributing the point load over the entire domain R. The
following is the integral expression for the deflection w:

-3G(Q.P)

n(P) MXP)ds(P)

w(Q) = iG(Q- pyv* (P)dS(P)+E£
+JLG(Q'P)P(P)dX(P)d)'(P) (10)

where s represents the arc length up till point P as measured from some arbitrary point on
the boundary B. Fundamental solutions associated with M. Q,, M,, M, and V, can be
developed by appropriate differentiation and are presented in detail in Section 3.1. It should
be noted that the direction of the line { in Fig. 2 is chosen as the normal rather than the
tangent direction to the boundary due to numerical consideration only. The numerical
discretization discussed in Section 4 results in a system of algebraic equations. The greater
the dominance of the diagonal term in the matrix of algebraic equations, the better the
numcrical accuracy of the solution. When boundary conditions are imposed on the normal
moment [eqn (4b)j, the singular nature of the fundamental solution yields a singularity
contribution (Cauchy’s principal value) when point P crosses point Q on the boundary.
The singularity contribution is zero if the tangent direction is chosen for the line { and is
cqual to [MXQ)/2] when the normal direction is chosen for the line {. This singularity
contribution is added to the diagonal term. Hence the diagonal dominance is increased
when the line { is in the direction normal to the boundary. Another way of saying the above
is that the normal dircction for { results in strong singular integrals (Fredholm equation of
the second kind) while the tangent direction results in weak singular integrals (Fredholm
equation of the first kind).

We note that the partial derivative at Q is the negative of the partial derivative at point
P. With that in mind we rewrite w and its derivatives as

wo(Q) = iG,Uk (@.PYV*(P) d~8‘+£0,,-,/.,..(Q. P)n, (PYM (P) ds(P)

+ JL G.x(Q, P)p(P)dx(p)dy(P) (1)

where all derivatives are now performed at point Q.

In a similar manner we can writc expressions for single and double derivatives at point
Q. It is clear from the second integral that we need to perform the differentiation of the
fundamental solution four times. These differentiations result in long, messy expressions.
The problem is particularly acute if onc seeks to integrate these expressions analytically.
An alternate notation is presented that is very convenient for presenting not only the
various fundamental solutions but also the integrals of the fundamental solutions.

3.1. Structure of the fundamental solutions
Most fundamental solutions are linear combinations of four singular functions, as was
pointed out by Vable (1985). In plate bending problems there is a more defined structure
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to the fundamental solutions, as reported in Zhang (1989). The structure is emphasized by
defining the following functions:

LG = rirtin(r) (12)
l (r-‘ +l—rv)P (r‘ —1ir .)p
(p.ql -— ! ¥ )
JG 2 li(f,( —ir) (","*"-ry)q} (13a)
1 (re+ir)  (r +i0r)
lpgl — I _ s
KG 2l'|:(r_( —ir) (r - ’-".»)"] (13b)
PGP = e (4

where p and ¢ are integers and 7 = ./ — 1. The complex variables used in eqn (13) are to
emphasize the structure of the fundamental solution that will be exploited in the devel-
opment of the algorithm in Section 4. The algorithm uses only real variables. In Table 1
the fundamental solution and its derivatives are defined in terms of the four functions
defined in eqns (12)-(14).

4. PROBLEM DISCRETIZATION

The objective of problem discretization is to generate an algebraic expression. A series
of assumptions needs to be made to reduce the line and arca integrals to algebraic expressions.
These assumptions and their implications arc considered next.

4.1. Line integral

The general algorithm described in Vable (1985) is used here for the evaluation of
line integrals. The algorithm is described briefly here in context of plates. Three assumptions
are made.

Assumption 1. Assume the unknown fictitious shear force and the unknown fictitious
moment can be represented by a linear combination of M piece-wise continuous functions
G-

Assumption 2. Assume that each of the m segments can be represented by N, straight
linc scgments.

Assumption 3. Assume g,, can be expanded about the mid-point by Taylor series.

The three assumptions, in the absence of distributed load (p = 0), reduce the line
integrals of eqn (11) to:

Tauble 1. Fundamental solution and its derivatives

8nDG = LGP pGle
81DG, = 2LG!'+JG!' "4 PG
8aDG, =2LG'""+KG"'"+ PG
87DG,, =2LG"Y+JG!" 42
8xDG,, = KGY""

8aDG,, =2LGYN-JG'"+2
8xDG,,, =3JG"*"-JG!"3

8nDG,,, = KG'*"—KG!"Y

81DG,,, =JG""+JG!

SRDGJVV = JKG(O") + KGha
810Gy, = 2JG! N —4JGI0

87DG ., = 2KG'"-2KG!"Y
8zDG,,,, = -2JG'"Y

8nDG,,,, = —2KG"'I-2KG!"?
82DG,,,, =2JG""+4JG1
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M N. NT l dv -
wu(Q) = gl },:. goa df,, . x (d™TH(Q. ) +dT T.(0. S,)n.(S,))  (15)
where
Span
ﬂ;’l(Q.S,,)=L (s—35,)7G.%(Q. P)ds(P) (16)

P

and §, = (§,.,+S5,)/2 is the mid-point of segment p. NT is the number of terms retained
in the Taylor series. For Lagrange linear polynomials, NT = | and for cubic Hermite
polynomials, NT = 3. The summations in eqn (15) define the assembly process. By satisfying
the boundary conditions at A points a set of algebraic equations in the unknown d{™ will
be obtained. The integrals in eqn (16) are evaluated using the transformation described
next.

4.1.1. Coordinate transformation. In Fig. 3 the pth line segment is shown. §, is the
angle of the line segment measured from the x-axis in the counterclockwise direction. Point
A is the intersection of the line segment with the perpendicular line drawn from point Q.
The perpendicular distance QA is designated as D, while the distance from the mid-point
B to point A is designated as C,. The tangential coordinate ¢, is measured from point B.
Noting that the influcnce functions in Table | are a lincar combination of the functions
defined in eqns (12)-(14) the problem reduces to the evaluation of the following four
integrals

rr,

IR = A LG dy, (17)
’ ’ ’
f’["” 1

[kl = . ,:jcli-ll d,P (18a)
"rpt 1

IK[/uJ] = . !:KG“‘” d,’, (|8b)

I3

-

Fig. 3. Geometry of the pth segment.

SAS 29:3-F
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~r

[P = J,M':PG“'” dr, (19)
where 7, = —L.2and T,., = L/2.
By geometry it can be shown that
ret+ir, = —e™(1,— B,) (20)
where
B, =C,+iD,. 2
Using eqns (13), (18). and (20) we obtain
I = (= 1) (cos (i+/)0,J 5 —sin (i +)0, K1) (22a)
IR% = (= 1)+ (sin (i 4+/)0,J %" +cos (i + /)0, K5 (22b)
where
JIh = (g g Ty (23a)
Kk = 211.(/},’**'I — Tlkey (23b)

P

¥ 1
Iyt = J Tl By,
o (=B

Tand B arce the complex conjugates of 7and B of eqns (24) and (21) respectively.

The integrals S KL% and 1PEY can be evaluated by the general recursive
algorithm given in Vable (1985). It must be emphasized that the entire computation is
carried out in the real plane and no complex arithmetic is used. The final results are
analytical values of the integrals in eqns (17), (18) and (19). These recursive relations can
also be used for determining continuity requirements and singularity contributions, as
shown in Sections 5 and 6 respectively.

4.2, Areaintegrals
For the purposes of presentation we define

A= J[ G (Q.PYp(P)dx(P)dy(P). (25)
#

The arca integrals are reduced to algebraic expressions by making two assumptions.
Assumption 1. We assume that the distributed load p(P) is piccewise constant over N

subregions R,. The slopes, moments and shear forces all contain derivatives of the fun-
damental solution. By using Green's theorem we have

Ap =S —p(RIPG,,(Q. P)m(P)ds. (26)

L

The minus sign is duc to the fact that the integration is with respect to P while the derivatives
are with respect to point Q. The transformation of the area integral in the displacement
expression is achicved by noting that:
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!’ In (") 6(’ In (f) -r /(‘}) e (27)

Using Green's formula it can be shown
N
Z P(R, )§ (rin LG 4 LG —0.25(PG + PG Ty)ds.  (28)

It should be noted that the boundary B, enclosing the domain element R, can be of
arbitrary shape. This is useful when the parts of the boundary B, are the same as the actual
boundary. In the interior the simplest approximation is a triangle. In this paper the entire
region R, is considered enclosed by a boundary made up from three parts. Each part can
have any arbitrary shape.

Assumption 2. Assume each of the three parts can be represented by M, straight line
segments. Equation (26) can thus be represented as

A =~ Z P(R) Yy Z (P, )f G.x(Q. P)ds(P). 29

n= 1 m=1p=1

With the last assumption we once more have integrals over straight lines. The term rn,
in eqn (28) is the perpendicular distance from the ficld point @ to the pth line segment and
equals D, of eqn (21). Hencee, all A values are lincar combinations of the functions given
by eqns (12)-(14). Thus the integrals in the equation are lincar combinations of the integrals
in egns (17) -(19) with & = 0 and can be found in exactly the same manner as described in
the previous section. It should be emphasized that recognition of the structure of the
fundumental solution as given by the definition of the four functions in eqns (12)-(14)
results in a simple algorithm that can be used for the unalytical evaluation of the line and
arca integrals,

5. CONTINUITY REQUIREMENTS

The fundamental solutions in Table I are singular when the field point Q overlaps the
source point P. The continuity requirements are established by answering the question:
what are the conditions the unknown fictitious shear force ¥* and the unknown fictitious
moment M ¥ must satisfly in order for the integrals to remain bounded? The integrals
containing the weak singulur functions G, G, and G, are always bounded. The singular
functions G, , and G, ,,, contain first and second order singularities and yield the information
we seek. These quantitics appear in the expressions of w,, und w, .

We will only consider the continuity requirements at a regular point on the boundary
and not a corner. There is no loss of gencrality by letting the point Q approach the boundary
from the interior along the normal direction (as shown in Fig. 4), as the continuity conditions

Fig. 4. Element geometry for establishing continuity requirements.
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are not dependent on the path of Q. Let O be the point where Q touches the boundary. We
draw two segments of length ¢ about point O. Let §,, and §,, be the integrals in the
expressions of w; and w, , in the vicinity of point O that may become unbounded. Thus

-~
5

$,(0) = j G (0. PIn(PYMN(P) ds (302)

-

~

S:Ik(Q) = j

&

G (Q.PYV*(P) d5+j G jm(Q. PIn, (PYM ¥ P)ds. (30b)
Expanding M ¥ about point O and using the integral formulas of Section 4 it can be shown
that:

See = =2sin20(MXO )Y = MHO N (n &) —In ()
=21 =cos 2B)(MXOT )+ MO Yn+terms of ordercand 8 (31)

where the superscripts + and — refer to the value of M * just after and before point 0.
Similar expressions can be derived for other S,;. As @ approaches point O, that is 3 — 0,
one way of enforcing that S, remains bounded is to demand

MXOT) = M0 ). (32)

The continuity of MY is more restrictive than warranted by eqn (31). For if
FALHO Y)Y = M HO ) < KO, then S, will remain bounded as d In(d) = 0 as & — 0. K refers
1o a positive number. The less restrictive condition ts referred to as Holder's condition.
However, it is not clear how one would enforee Holder's condition in BEM,

It should be emphasized that iF S, is bounded then w,, is bounded. This implies that
moments M, and henee stresses must remain bounded. In problems such as rectangular
holes tn infinite plates, stresses at the corner are not bounded. Analysis of such problems
must therefore permit discontinuitics in M ¥ at the corners. Another point to note is that
w,; can be bounded and yet be discontinuous. Thus if finite discontinuity in stresses is being
modeled then the continuity of M must be enforced.

The continuity of w;, 1s necessary if w,, must be bounded, Hence the continuity of
M ¥ is assumed in writing the tollowing expression for S, :

See = {c0s 30 =3 cos HV*O)— V0 Nn(e)~1n{3) +in 30 -3 sin )
X (F*OY+V*0 N —6(sin ) —sin 30) M X0)/e — 3(sin 30 —sin 0)

* M*
x (dM-" (0°)— dar; 0" ))(ln () ~In {0)) + 3(cos 30 —cos 1))
ds dy
AL * AlX
x (df{" 0+ d" 0" ))n. 33
dy dy

A simple way of enforcing that S,., remains bounded as § — 0 is to demand that

V*(Q=)=¥*0") (34)
My dAMp
& 0 =50, e

The continuity of the fictitious shear force I™* and continuity of the slope of the
fictitious moment M *is more restrictive than necessary. The conditions
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dMy day

[V*@©0*)—1*(0") < K0 and -&s—(0‘)-— &

(07)] < K29,

referred to as Holder and Hadamard conditions, are less restrictive but it is not clear how
one enforces these conditions in BEM. Once more it is emphasized that the continuity
requirements of an equation do not preclude discontinuities in shear forces. The conditions
only enforce that the discontinuities in the shear force remain finite.

5.1. Choice of polynomial approximation

The Lagrange polynomials ensure continuity of a function at element nodes as the
coefficients of the polynomial are determined in terms of the nodal values of the function
and are good choice for the approximation of the fictitious shear force ¥'*. The Hermite
cubic polynomials ensure continuity of the function and its first derivatives as the coeflicients
of the polynomials are evaluated in terms of the nodal values of the function and its
derivatives. The optimum choice of approximation would yield three unknowns per node
(nodal values of fictitious shear force, nodal values of moment and its derivative). However,
we need to satisfy two boundary conditions per collation point. This dichotomy leads to
a cumbersome coding process. In this work the fictitious shear force and moment are
approximated by the same polynomial, which will either be a Lagrange linear polynomial
or a Hermite cubic polynomial. It should be emphasized that the cubic Lagrange polynomial
approximation used by Vitooraporn and Moshaiov (1989) does not satisfy continuity of
slopes at the element nodes. Thus the use of the cubic Lagrange polynomial may lead to
poor results near the nodes on the boundiry as slope continuity is not satistied at these
points.

6. SINGULARITY CONTRIBUTION

In this work no explicit expression for the singularity contribution is coded in the
computer program. The iterative formulae of Vable (1985) are used when the field point
Q is within 4 boundury clement. To ensure correct computation, point @ is always chosen
as the mid-point of a 2¢ segment (@ = O in Fig. 3). The limitation of this idea is that it
cannot be used at corners. The analytical values of singularity contributions at a regular
point as computed in the code are given below to elaborate a potential problem. The
singularity contribution for the bending moment (SM,) and the equivalent shear force (SV)
were calculated from S, and S, by enforcing the continuity conditions of eqns (32), (34)
and (35). The values of the singularity contributions are :

SM, = M*/2. (36)

v Ta-vy 1+v]
SV == +[ T ZEJM,,. 37

Note the coefficient of M ¥ in the expression {or equivalent shear for SV, It contains the
term of 1/, which would seem to imply that as ¢ — 0, equivalent shear force ¥ will become
unbounded. This does not happen as the term is independent of the element orientation
and when the contributions from the other clements are added this term cancels out. This
is the basic mechanism in the computation of the finite part of integrals containing higher
order singularities. However, during computation a large number is added into the matrix
and later subtracted. This addition and subtraction of large numbers can lead to a loss of
significant figures. Therefore it may be worthwhile considering a regularization process for
higher order singularities for analytical integration along the lines proposed by Rudolphi
(1991) for numerical integration.
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7. DIMENSIONLESS VARIABLES

Let L and M, be some characteristic length and moment. The dimensionless variables
shown below with a hat are

X, =x/L
W= Dw (M,L")
W, = Dw,(M,L)
Ww,, = Dw, M,
W = (DLYw, ./ M,

Q. =0Q.LM,
V=1 LiM,
p=pLiM,

M= MYM,

Y= LM, (38)

Substituting the above definition into the integral equations (10), we obtain

W(Q) = ff) G(Q. P)V*(P) d.\"+({) G Q. Pyn(P)MHP)ds
n Jn

+“ G(Q. PYp(PYd3(P)di(P) +1n (1.)[%(;3;’*(1’) ~2hn, MM P))ds |.

(39

If the last term in the square bracket is not zero, then the choice of the non-dimen-
sionalizing parameter L will affect the displacement. Since the term in the square brackets
is a quadratic in the ficld point coordinates the slope and the moments can also be affected
by the choice of the parameter L. It can be confirmed that the following four conditions
must be satisfied if the computed solution is 1o be independent of the parameter L :

R = #)[/,’(P)V*(P)—— ‘L{l((;)) M:‘(l’)]d.\' =0 i=1.....4 (40)

where /i = L fy = xi fy =y fo= (7 +37).

The first condition (R,) implics that foree equilibrium in the z-direction must be met by
the fictitious shear force distribution. The sccond (R») and third (R;) conditions imply that
the moment equilibrium in the y- and x-directions respectively must be satisfied by the
unknown distribution. The last condition (R,) can be interpreted as a second moment of
some kind. The conditions of eqn (40) are not explicitly enforced and may not be satisficd
by the computed solution, as the numerical results demonstrate. Wu and Altiero (1981)
reported that the choice of reference radius (the same as the parameter L) affected their
results. There are two likely reasons for this. (i) Their unknown distribution did not satisfy
the conditions of eqn (40). (it) The conditioning of the matrix in the algebraic system may
have been significantly affected, as discussed by Heise (1987). Work is in progress to overcome
both these problems. as was done for elastostatics in Vable (1990). In this work the con-
ditioning of the matrix and the value of the resultants R; in eqn (40) will be monitored.
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§. NUMERICAL RESULTS

Extensive numerical testing was conducted for all types of boundary conditions. Bound-
ary data (w,d, M,, ¥) were generated from a known analytical solution. Three kinds of
boundary conditions were simulated and the computed solution was compared with the
analytical solution at a number of points. The three types of boundary conditions that were
simulated were the following.

Type 1 : displacement and slopes were specified to simulate the clamped type boundary
conditions.

Type 2: displacement and moments were specified to simulate simply supported boundary
conditions.

Type 3: equivalent shear force and moments were specified to simulate the free edge bound-
ary conditions.

Each problem was solved using linear Lagrange polynomials and then using cubic
Hermite polynomials for the approximation of the unknowns, and the results are compared.
In all problems the condition number of the matrix in the algebraic equation was computed.
The matrix condition number was computed using the following definition :

Matrix condition number = [ A « |4~ ] 4n

where | 4]} and | 4~ '{] are the norm of the matrix and its inverse respectively. The following
definition for the norm of the matrix is used :

141 = max T 14,

The authors feel that the condition number of the matrix should be monitored for all
algorithms as it reflects the sensitivity of the output data to small errors or changes in the
input data, as shown in Vable (1987, 1990). The four paramecters R,—R, defined by
equations were computed and are reported for each problem for reasons discussed in
Section 7.

8.1. Example |
The dimensionless displacement solution for a claumped circular plate under a uniform
transverse load is given in Timoshenko and Woinowsky-Krieger (1959):

w=(1-7)%/64 (42)

where the non-dimensionalizing paramcters L = radius of the plate and M, = pL°. The
plate boundary was uniformly divided into 24 elements [M = 24 in egn (15)] for lincar
Lagrange approximation. Each of the elements was subdivided into four straight line
[N, = 4ineqn (15)] segments. Boundary conditions were satisfied every 15°, Thus the total
number of unknowns was 48. For the Hermite cubic approximation the boundary conditions
were collocated at the same points. The boundary was made up of 12 elements (M = 12)
with eight subdivisions. In other words the length of the cubic element was formed by
combining two linear elements,

The area integral was evaluated using a single element [NV = | in eqn (29)], as the
transverse load is constant over the entire plate. The same nodes and elements as used for
the line integrals were then used for evaluating the area integral.

Analytical values were compared with the computed values for the dimensionless
displacement 1, moment M, and shear force @,. No appreciable difference was found
between the linear and the cubic approximations and hence only results from the cubic



358 M. VasLE and Y. ZHANG

Table 2. Percentage errors in example |

Boundary condition Boundary condition Boundary condition
type | type 2 type 3

. 0 w M, Q  w M. Q

Coordinates
r ‘) w M

0.00 0 006 003 — 224 11— 200 002 —
0.50 0 008 009 000 299 307 0.00 3714 002 0.00
0.90 0 029 002 0.0t 1L75 106 0.01 * 0.03 001
0.95 0 047 001 004 22.84 084 004 . 0.0! 0.03
0.99 0 094 039 055 2200 034 055 * 0.02 0.4l
1.00 0 — 072 1.00 — 0.00 1.00 — 000 0.75
1.00 15 — 065 [.O0 — 010 1.00 — 000 075
.00 30 — 045 .01 — 042 100 — 001 0.75
.00 45 — 003 09 — 106 1.00 — 003 0.75

R, -314 =312 -2.31

R, —-1.57 —-1.57 -2.39

approximation are reported in Table 2, The same type of boundary condition was specified
at all points.

The results of Table 2 show good correlations with analytical results for moments and
shear forces. Good correlations are also obtained for displacements when type | boundary
conditions are imposed. Type 2 and 3 boundary conditions, however, show large crrors for
the displacements. The asterisk in Table 2 implies error in excess of 10,000%. The reason
for these large errors is the presence of rigid body modes in the solution. If displacement is
not specified at any point, such as in type 3 boundary conditions, then the body is free to
translate. Similarly, if slope is not specified at any point, such as in type 2 and 3 boundary
conditions, then the plate is free to rotate in the rigid body sense. From the computed
results, if the rigid body mode is caleulated (the numerically computed boundary values for
displacement and stope were not zero) and accounted for, then the error was of the order
of the type | boundary condition. Clearly this is an unacceptable procedure for practical
problems. Work is in progress to determine and eliminate the rigid body mode, as was
described for elastostatic problems in Vable (1987, 1990). It is worth noting that R, and
R, are not zero for any type of boundary condition. R, and R; are nearly zero and are not
reported. It is certain that the non-zero values of R, and R, contribute towards the error,
but to what degree is not clear at this stage. In Tuable 3 the condition numbers for the two
approximations for different boundary conditions are reported. For all boundary conditions
the cubic approximation shows an order of magnitude higher condition numbers. These
higher condition numbers imply a greater sensitivity to small changes or errors in the input
data for the cubic approximation. The reason linear and cubic approximations yield the
same percentage error was found in the behavior of the unknown. The first derivatives
along the boundary for fictitious shear force and moment were found to be zero for this
problem. In other words the fictitious shear force and moment were constant along the
boundary for this problem. Thus the cubic approximation did not improve the approxi-
mation of the unknown as one had hoped.

8.2. Example 2

The dimensionless displacement solution for a simply supported square plate under a
uniform transverse load is given in Timoshenko and Woinowsky-Krieger (1959):

Table 3. Comparison of matrix condition numbers in example |

Boundary condition Boundary condition Boundary condition

type | type 2 type 3
(x10Y) (x10Y (x10Y)
Lincar 8.6 12.0 0.46

Cubic 2320 2270 72.4
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w= Y A, cosh(m,n})+ B,(mny)sinh (mny)+ C, sin(mn(x—0.5)) 43)
m=1{35
mn mn
A, =— (—2— tanh 7 +2)B,,,

2/(1z5m5 cosh ?)

C, = 4/n°m’

B,

where the non-dimensionalizing parameter L = the side of the square and M, = pL*. The
origin of the coordinate system is at the center of the plate. The boundary data 0, M, and
I can be easily generated by repeated differentiation of eqn (43). M and Q, can be found
similarly. A computer program was written in which the series was truncated at m=91.
Boundary data were generated to simulate various boundary conditions. At each point on
the boundary the same kind of boundary condition was specified for types | and 2. The
type 3 boundary condition was not specified at all points because it would have resulted in
a rigid body mode, as in example 1. Type 3 was specified on y = 0.5 and on the remaining
three sides the type 2 boundary condition was specified. It should be emphasized that at
cach corner either the displacement or the corner force [eqn (8)] should be enforced.
However, this was not done in the solution process for a varicty of reasons. The chief reason
being that the variety of tricks suggested in the literature for modeling the corners have
cither not proved satisfactory or have limited application.

The problems were solved using lincar Lagrange and cubic Hermite approximations.
The mesh discretization was the same except that the length of a cubic clement was
constructed by combining two lincar clements. The total number of unknowns for both
approximations was 96. The boundary clement solution was compared with the serics
solution and the percentage difference is reported in Table 4 for the lincar approximation
and Table 5 for the cubic approximation. Results are reported along the diagonal and
x=0.

The cubic approximation yiclds better results for all types of boundary conditions. Its
results are an order of magnitude better than the linear approximation when type 3 boundary
conditions are imposed on the edge y = 0.5. For both approximations the results deteriorate
as one approaches the corner. However, the accuracy of the linear approximation deterio-
rates more rapidly than for the cubic approximation. Near the corner X = j = 0.49, both
approximates yield nonsensical results. [t should be noted, however, that all three quantities
(W, M, and Q,) approach zero near the corner. Thus small differences result in very large
percentage errors. As one moves from the center towards the edge along X = 0, the error
increases as expected. It should be noted once more that w and A, tend to zero near

Table 4. Percentage errors in example 2 for linear Lagrange approximation

Boundary condition

Boundary condition Boundary condition typeJony =0.5,
type | type 2 type 2 elsewhere
Coordinatcs
x y w M« Qx w Mx Qt w Mr Ql
000 000 0.14 006 — 0.51 0.36 — 9.47 6.67 —_
020 020 0.16 0.07 0.26 0.33 0.0l 1.09 8.62 4.11 309
040 040 148 246 1090 646 763 192 231 185 9.13
045 045 104 60.5 1715 34.1 504 885 107 1160 180
000 020 0.16 O0.18 0.30 0.41 0.07 0.20 6.26 0.60 84
000 040 0.13 038 .11 0.51 0.93 1.59 4.81 7 044
000 045 0.10 025 2.19 0.63 1.39 5.03 4.28 328 4.06
000 049 0.22 309 382 .20 184 1.4 1.62 18.2 10.7
R, -0.97 -0.94 -0.92

R, -0.19 ~0.18 -~0.17
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Table 5. Percentage errors in example 2 for cubic Hermite approximation

Boundary condition
Boundary condition Boundary condition  type 3on y = 0.5,

type | type 2 type 2 elsewhere

Coordinates
x v W M, Q. w M, Q. w M, Q.
000 000 00! 001 — 0.4 010 — 064 039 —

020 020 001 001 004 0O.l6 014 000 1.06 085 046
040 040 012 033 280 044 207 045 310 483 597
045 045 040 4380 434 091 154 222 258 186 430

0.00 020 001 001 004 0Ot3 010 008 069 055 001
000 040 001 008 060 016 022 021 082 L19 089
000 045 006 0239 156 016 025 014 089 143 195
000 049 049 117 345 013 026 017 014 B854 752

R, -1.1 ~L1 ~11
R, —-0.23 —-0.23 -0.23

Table 6. Comparison of matrix condition numbers in example 2

Boundary condition
Boundary condition  Boundary condition  type Jony =0.5,

type | type 2 type 2 clsewhere
Approximation {(x 10%) (x 10%) (%109
Lincar 25 73 8320
Cubic 24 479 8570

the edge, but in spite of this the results at ¥ = 0.49 are not unrcasonable for the cubic
approximation.

Table 6 shows the matrix condition numbers for the lincar and cubic approximations.
Once more the cubic approximation results in a higher condition number for all types of
boundary condition. However, the differences are not as dramatic as in example 1.

9. CONCLUSIONS

The definition of the four functions in eqns (12)-(14) simplifies the description of the
fundamental solution. [t also reveals the structure of the fundumental solution that can be
exploited for the analytical evaluation of line and area integrals. For stresses and shear
forces to remain bounded the fictitious shear force and fictitious bending moment must be
continuous. The first derivative of the fictitious moment must also be continuous. When
the continuity conditions are met then the accuracy of the computed solution is better, as
demonstrated by example 2. The matrix condition number, however, becomes worse when
Hermite approximations are used to meet the continuity requirements, making the solution
more sensitive to changes and error in the input data. This higher condition number is
most likely because two collocation points are put in each element for the cubic Hermite
approximation as opposed to a single collocation point for the linear Lagrange approxi-
mation. When the fictitious shear force and fictitious bending moment distributions do not
satisfy the conditions given in eqn (40), then in addition to a rigid body mode, errors in
moments are also possible. Work is in progress to improve the matrix conditioning and
determine and account for the rigid body mode.
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